top of page

Smart Irrigation System

Smart irrigation systems tailor watering schedules and run times automatically to meet specific landscape needs. These controllers significantly improve outdoor water use efficiencies.

Unlike traditional irrigation controllers that operate on a preset programmed schedule and timers, smart irrigation controllers monitor weather, soil conditions, evaporation and plant water use to automatically adjust the watering schedule to actual conditions of the site.

For example, as outdoor temperatures increase or rainfall decreases, smart irrigation controllers consider on site-specific variables, such as soil type, sprinklers’ application rate, etc. to adjust the watering run times or schedules. There are several options for smart irrigation controllers.

Weather-based smart irrigation controllers

Soil moisture sensor-based smart irrigation controllers use one of several well-established technologies to measure soil moisture content. When buried in the root zone of turf, trees or shrubs, the sensors accurately determine the moisture level in the soil and transmit this reading to the controller.

There are two different soil moisture sensor-based systems available:

Suspended cycle irrigation systems, which are set like traditional timer controllers, with watering schedules, start times and duration. The difference is that the system will stop the next scheduled irrigation when there is enough moisture in the soil.

Water on demand irrigation requires no programming of irrigation duration (only start times and days of the week to water). It has a user-set lower and upper threshold, which initiates irrigation when the soil moisture level fails to meet those levels.

Proximity Sensors

A proximity sensor is a sensor able to detect the presence of nearby objects without any physical contact.

A proximity sensor often emits an electromagnetic field or a beam of electromagnetic radiation (infrared, for instance), and looks for changes in the field or return signal. The object being sensed is often referred to as the proximity sensor's target. Different proximity sensor targets demand different sensors. For example, a capacitive proximity sensor or photoelectric sensor might be suitable for a plastic target; an inductive proximity sensor always requires a metal target.[citation needed]

Proximity sensors can have a high reliability and long functional life because of the absence of mechanical parts and lack of physical contact between the sensor and the sensed object.

Proximity sensors are also used in machine vibration monitoring to measure the variation in distance between a shaft and its support bearing. This is common in large steam turbinescompressors, and motors that use sleeve-type bearings.

A proximity sensor adjusted to a very short range is often used as a touch switch.

inductive sensor.png
bottom of page